spamsink: (Default)
[personal profile] spamsink
via
An auditorium with 200 seats, numbered from 1 to 200, is filled to capacity. A speaker, who happens to be a mathematician, steps up to the podium overlooking the audience and pauses for a moment. “You know,” she says, “I’m thinking of a rather large whole number. Every seat number in this auditorium evenly divides my number, except for two of them — and those two seats happen to be next to each other.”

As you’d expect, adjacent seats in the auditorium have consecutive numbers. Which two numbers was the speaker referring to?

 

 
Мне повезло: у меня случился инсайт, и процесс решения занял секунд 10. 
Комменты открыты.

Date: 2019-10-12 12:41 am (UTC)
lxe: (Default)
From: [personal profile] lxe
2, 3

Date: 2019-10-12 01:13 am (UTC)
lxe: (Default)
From: [personal profile] lxe
А. Невнимательно прочитал.

Date: 2019-10-12 05:19 am (UTC)
lxe: (Default)
From: [personal profile] lxe
127, 128 (я не сразу сообразил, что подходит не только простое число, но и его целая степень)

Date: 2019-10-12 12:56 am (UTC)
sab123: (Default)
From: [personal profile] sab123
Одно число, наверное, должно быть достаточно большим простым числом, больше 100, чтобы на него не делилось ни одно из других чисел. А второе - видимо, состоять из таких делителей, чтобы стольких же не понадобилось ни для какого другого числа до 200. То есть, быть степенью какого-то простого числа, максимально помещающейся под 200.

То есть, 127 (простое) и 128 (степень). Может и еще какие-то есть.

Это я со второй попытки догадался.

Date: 2019-10-12 02:46 am (UTC)
sab123: (Default)
From: [personal profile] sab123
В ретроспективе, там степени двойки - единственный вариант, потому что все остальные простые числа - нечетные.

Date: 2019-10-12 01:05 am (UTC)
glocka: (Default)
From: [personal profile] glocka
Ставлю на 127, 128

Date: 2019-10-12 01:12 am (UTC)
rwalk: (Default)
From: [personal profile] rwalk
127, 128 - действительно хорошая :)

факториал

Date: 2019-10-12 04:04 am (UTC)
From: [personal profile] h1uke
198!

Date: 2019-10-12 07:14 am (UTC)
From: [personal profile] sassa_nf
Two numbers that are the largest powers of some two primes less than 200. Then all other numbers, if they have the same primes in their factorisation, are products of smaller powers of those same primes. Then many "large" numbers fit the description, as long as they do not contain these two primes to that power.

Perhaps, 127 (prime to the power 1) and 128 (prime to the power 7) are the two consecutive seats.

Date: 2019-10-12 07:19 am (UTC)
From: [personal profile] sassa_nf
Although I tried to be formal, I can see the description of the solution lacks in generality, and I did not look for uniqueness of the solution. But they did not ask.

Date: 2019-10-12 08:50 am (UTC)
From: [personal profile] sassa_nf
Yes, I was thinking to update the comment with that. But maybe later.

Date: 2019-10-12 09:15 am (UTC)
From: [personal profile] sassa_nf
All numbers can be represented as a prime factorisation:

p^i * q^j * ... (a product of some primes to some powers)

It is not possible for the solution to have a number with all powers being zero, because that is 1, and any number is a multiple of 1. So all solutions must have some non-zero powers.

It is not possible for the solution to have a number that has more than one prime in its factorisation, which can be seen as follows.

If the number is a multiple of all other numbers except some chosen p^i * q^j for non-zero i and j, then of course it is a multiple of p^i and q^j, and, p^i and q^j being co-prime, it also is a multiple of p^i * q^j.

So the solution can only consist of numbers like p^i for some prime p and non-zero i.

Since the seat numbers are adjacent, one of them is even. Given the conclusions above, it also means it must be not just an even number, but necessarily a power of 2.

If the number were divisible by the biggest power of 2 that is less than 200, it is also divisible by any smaller power of 2. So we have to pick one seat with the biggest power of 2 that is less than 200, which is 128.

The other seat must necessarily be a power of a single prime, too. So we check 127 and 129. 129 is not a prime, 127 is, so we have a unique solution.

Date: 2019-10-12 08:40 am (UTC)
vanja_y: (Default)
From: [personal profile] vanja_y
127 и 128

Ни одно из искомых чисел не может раскладываться в произведение двух взаимнопростых. Значит каждое из них есть степень простого. Одно из них чётное, следовательно, оно будет степенью двойки. Это число не может быть меньшим 128-ми, ибо иначе 128 также не делило бы загаданное число, что противоречит условиям наложенным на загаданное число. Значит чётное число в искомой паре 128. Так как 129 составное, оно не подходит в качестве второго числа пары. Остаётся 127, которое простое. Легко видеть, что наименьшее общее кратное чисел от 1 до 200, исключая 127 и 128, не будет делиться ни на 127, ни на 128, но будет кратным всем остальным числам от 1 до 200.

Date: 2019-10-12 07:01 pm (UTC)
From: [personal profile] dijifi
127 128
Page generated May. 25th, 2025 08:42 pm
Powered by Dreamwidth Studios
OSZAR »